Question Number	Answer		Mark
1(a)(i)	Convex curve drawn from the box to the drop zone	(1)	1
1(a)(ii)	$\begin{aligned} & \text { Use of } s=u t+1 / 2 a t^{2} \\ & t=3.6(\mathrm{~s}) \end{aligned}$ Example of calculation $\begin{aligned} & 63 \mathrm{~m}=0+\left(1 / 2 \times 9.81 \mathrm{~m} \mathrm{~s}^{-2} \times t^{2}\right) \\ & t=3.6 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \end{aligned}$	2
1(a)(iii)	Use of speed $=\frac{\text { distance }}{\text { time }}$ Distance $=270 \mathrm{~m} \quad$ (ecf) [300 m using the show that value] Example of calculation $75 \mathrm{~m} \mathrm{~s}^{-1}=\frac{\text { distance }}{3.6 \mathrm{~s}}$ Distance $=270 \mathrm{~m}$	$\begin{aligned} & \mathbf{(1)} \\ & (\mathbf{1}) \end{aligned}$	2
1(b)(i)	Use of GPE $=m g h$ GPE = $6.2(\mathrm{~kJ})$ (A unit is required for an answer in J to score MP2) Example of calculation $\begin{aligned} & \text { GPE }=10.0 \mathrm{~kg} \times 9.81 \mathrm{~N} \mathrm{~kg}^{-1} \times 63 \mathrm{~m} \\ & \text { GPE }=6180 \mathrm{~J} \end{aligned}$	$\begin{aligned} & \hline \text { (1) } \\ & \text { (1) } \end{aligned}$	2
1(b)(ii)	$\begin{aligned} & \text { Use of } \mathrm{KE}=1 / 2 m v^{2} \\ & \mathrm{KE}=28.1(\mathrm{~kJ}) \end{aligned}$ (A unit is required for an answer in J to score MP2) $\begin{aligned} & \text { Example of calculation } \\ & \mathrm{KE}=1 / 2 \times 10.0 \mathrm{~kg} \times\left(75 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2} \\ & \mathrm{KE}=28125 \mathrm{~J} \end{aligned}$	$\begin{aligned} & \hline \text { (1) } \\ & \text { (1) } \end{aligned}$	2
17(b)(iii)	KE at bottom $=34.3 \mathrm{~kJ} \quad$ (ecf) Example of calculation KE at bottom $=6180 \mathrm{~J}+28125 \mathrm{~J}=34305 \mathrm{~J}$	(1)	1
1(b)(iv)	Work is done against air resistance Or energy transferred due to air resistance	(1)	1
1(c)	Reduces the acceleration of the package Or reduces the speed on impact of the package $\mathbf{O r}$ has a lower terminal velocity $\mathbf{O r}$ less (resultant) force on the package		1
	Total for question 17		12

Question Number	Acceptable Answers		Mark
2(a)	Use of an equation of motion involving $a=g$ or $-g$ (1) $v=u+a t$ with v or $u=0$ and double t Or Use of $s=u t+1 / 2 a t^{2}$ with $s=0$ Or Use of $a=\frac{v-u}{t}$ with $v=-u$ Or Find max $s=0.40 \mathrm{~m}$ then use $s=1 / 2(v+u) t$ and double t (do not award MP2 if $8 \mathrm{~m} \mathrm{~s}^{-1}$ used) Time $=0.57$ or $0.58(\mathrm{~s})$ (Do not award $3^{\text {rd }}$ mark if negatives have been ignored.) Example of calculation: using $a=\frac{v-u}{t}$ $t=\frac{0-2.8 \mathrm{~ms}^{-1}}{-9.81 \mathrm{~ms}^{-2}}=0.285 \mathrm{~s}$ to reach top of jump $t=0.57(\mathrm{~s})$	(1) (1)	3

Question Number	Acceptable Answers		Mark
2(b)	Use of distance $=8 \mathrm{~m} \mathrm{~s}^{-1} \times$ time (either their time or 0.6 s) Distance $=4.6 \mathrm{~m}(\operatorname{ecf}(\mathrm{a}))$ (If show that value of 0.6 s used then $d=4.8 \mathrm{~m}$) Example of calculation Distance $=8.0 \mathrm{~m} \mathrm{~s}^{-1} \times 0.57 \mathrm{~s}$ Distance $=4.6 \mathrm{~m}$	(1) (1)	2

Question Number	Acceptable Answers	Mark
2(c)	Attempt to calculate total / extra time using correct equations with correct vertical values $t=0.14 \mathrm{~s}$ or $1 / 7 \mathrm{~s}$ extra time for additional drop assuming $\mathrm{u}=2.8 \mathrm{~m} \mathrm{~s}^{-1}$ $t=0.43 \mathrm{~s}$ or $3 / 7 \mathrm{~s}$ time from calculation of maximum height using $\mathrm{u}=0$ $t=0.71 \mathrm{~s}$ or $5 / 7 \mathrm{~s}$ time for whole trajectory using $\mathrm{s}=-0.5 \mathrm{~m}$ $\begin{equation*} \text { Distance }=8.0 \mathrm{~m} \mathrm{~s}^{-1} \times \text { time } \tag{1} \end{equation*}$ Extra horizontal distance travelled $=1.1 \mathrm{~m}$ to 1.2 m Example of calculation $\begin{aligned} & v^{2}=\left(2.8 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}+\left(2 \times 9.81 \mathrm{~m} \mathrm{~s}^{-2} \times 0.50 \mathrm{~m}\right) \\ & v=4.2 \mathrm{~m} \mathrm{~s}^{-1} \\ & t=\frac{4.2 \mathrm{~m} \mathrm{~s}^{-1}-2.8 \mathrm{~m} \mathrm{~s}^{-1}}{9.81 \mathrm{~m} \mathrm{~s}^{-2}} \\ & t=0.14 \mathrm{~s} \\ & \text { Distance }=8.0 \mathrm{~m} \mathrm{~s}^{-1} \times 0.14 \mathrm{~s} \\ & \text { Distance }=1.1 \mathrm{~m} \end{aligned}$	4
	Total for question 16	9

Question Number	Answer		Mark
3(a)(i)	The ball has bounced Or the ball would be below initial height Or the ball has landed before reaching the goal Or the ball has hit the ground	(1)	1
3(a)(ii)	Correct shape of at least one trajectory, starting at the kick and ending at/beyond the goal Range/position of the higher angle > range/position of lower angle ball seen with paths labelled Example of response scoring 2 marks	(1) (1)	2
3(b)(i)	Use of $\left(u_{\mathrm{H}}\right)=u \cos 15$ Or $u \sin 75$ Or see $25(.1) \mathrm{m} \mathrm{s}^{-1}$ Use of $u=s / t$ to calculate the time to the goal Or see 0.44 s Use of $\left(u_{\mathrm{V}}\right)=u \sin 15$ Or $u \cos 75$ Or see $6.7 \mathrm{~m} \mathrm{~s}^{-1}$ Use of $s=u t+1 / 2 a t^{2}$ (a must be negative) $s=2.0 \mathrm{~m}$ Use of (value obtained + the 0.22 m (or 0.11 m)) to make a sensible statement as to whether or not the goal will be scored e.g. the top of the ball on reaching the goal 2.23 m . (This is less than 2.4 m and) the goal will be scored (Answer must be consistent with calculated distance. For calculated heights greater than 2.4 m , candidates do not need to refer to radius /diameter but a comparison of heights is needed.) Example of calculation $\begin{aligned} & t=\frac{11 \mathrm{~m}}{26 \mathrm{~ms}^{-1} \times \cos 15^{\circ}}=0.44 \mathrm{~s} \\ & s=\left(26 \mathrm{~m} \mathrm{~s}^{-1} \times \sin 15^{\circ}\right)(0.44 \mathrm{~s})+(1 / 2)\left(-9.81 \mathrm{~N} \mathrm{~kg}^{-1}\right)(0.44 \mathrm{~s})^{2} \\ & s=2.01 \mathrm{~m} \end{aligned}$ Height of the top of the ball on reaching the goal $=2.01 \mathrm{~m}+0.22 \mathrm{~m}=2.23 \mathrm{~m}$	(1) (1) (1) (1) (1) (1)	6
3(b)(ii)	Air resistance is in the opposite direction to the ball's motion Or air resistance adds a backwards force Or work is done against air resistance The ball will decelerate (horizontally) Or the ball will have a decreasing velocity/speed Or the ball will not travel as far Or this reduces the maximum height the ball reaches $\mathbf{O r}$ the ball is in the air for less time $\mathbf{O r}$ the ball will take longer to reach the goal	(1) (1)	2
	Total for question 18		11

Question Number	Answer		Mark
4(a) (i)	Use of correct equation(s) of motion to be able to find t $t=0.23$ (s) (no ue) Example of calculation $\begin{aligned} & 0.25 \mathrm{~m}=(0 \times t)+1 / 2 \times 9.81 \mathrm{~m} \mathrm{~s}^{-2} \times t^{2} \\ & t=0.23 \mathrm{~s} \end{aligned}$	(1) (1)	2
4(a) (ii)	$\text { Use of speed }=\frac{\text { distance }}{\text { time }}$ Distance $=0.59 \mathrm{~m}-0.60 \mathrm{~m} \quad(\mathrm{ecf})$ (show that value gives $d=0.52 \mathrm{~m}$) Example of calculation $\begin{aligned} & d=2.6 \mathrm{~m} \mathrm{~s}^{-1} \times 0.23 \mathrm{~s} \\ & d=0.60 \mathrm{~m} \end{aligned}$	(1) (1)	2
4(b)(i)	Ball has a curved path with a decreasing gradient and the monkey' path is downwards Initial path of ball parallel to launcher and monkey approximately vertical with paths intersecting below initial position of monkey (Allow a small gap between the paths approximately the width of monkey)	(1) (1)	2
4(b)(ii)	Use of speed $=\frac{\text { distance }}{\text { time }}$ with $\cos 20^{\circ}$ to find the time of the drop Use of $s=u t+1 / 2 a t^{2}$ with $u=0$ Distance fallen $=0.15 \mathrm{~m}-0.16 \mathrm{~m}$ Example of calculation $\begin{aligned} & t=\frac{0.50 \mathrm{~m}}{3 \cos 20^{\circ}}=0.177 \mathrm{~s} \\ & s=1 / 2 \times 9.81 \mathrm{~m} \mathrm{~s}^{-2} \times(0.177 \mathrm{~s})^{2} \\ & s=0.154 \mathrm{~m} \end{aligned}$	(1) (1) (1)	3
	Total for question 18		9

Question Number			Mark
5(a) (i)	Use of equation of motion suitable for a, e.g. $v=u+a t$ $a=16.3 \mathrm{~m} \mathrm{~s}^{-2} \quad\left(2.1 \times 10^{5} \mathrm{~km} \mathrm{~h}^{-2} \text { or } 58.7 \mathrm{~km} \mathrm{~h}^{-1} \mathrm{~s}^{-1}\right)$ Example of calculation	(1) (1)	2
5(a) (ii)	Use of $E_{\mathrm{k}}=1 / 2 m v^{2}$ Use of $P=E / t$ Power $=3.1 \times 10^{6} \mathrm{~W}$ Or Use of $F=m a$ (must be a from (i)) and Use of equation to find distance and use of work done $=\mathrm{Fd}$ Use of $P=E / t$ Power $=3.1 \times 10^{6} \mathrm{~W}$ (distance $=43 \mathrm{~m}$) Examples of calculations $\begin{aligned} & E_{\mathrm{k}}=1 / 2 \times 10000 \mathrm{~kg} \times\left(37.5 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}=7.03 \times 10^{6} \mathrm{~J} \\ & \text { Power }=7.03 \times 10^{6} \mathrm{~J} / 2.3 \mathrm{~s}=3.1 \times 10^{6} \mathrm{~W} \end{aligned}$	(1) (1) (1) (1) (1) (1)	3
5(a) (iii)	Energy transferred by heating Or energy transferred due to friction Or work done against friction Or idea that more energy required (due to energy transfer) due to friction. (do not accept 'lost' but accept air resistance as an alternative to friction)	(1)	1
*5(b	(QWC - Work must be clear and organised in a logical manner using technical wording where appropriate) larger force is needed $\mathbf{O r}$ the (same) force is insufficient need same acceleration/ (max) velocity OR acceleration/(max) velocity is too small more energy needed (to reach top) Or insufficient energy (to reach top)	(1) (1) (1)	3
5 (c)	Viscosity of oil decreases (with increasing temperature) Or the (warm) oil is less viscous (accept a reverse argument e.g. when cold oil is more viscous) Lower frictional/resistive force Or less viscous drag	(1) (1)	2
	Total for question 16		11

Question Number	Answer		Mark
6(a)(i)	Use of $v=s / t$ Velocity $=2.1\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \quad$ (No ue) Example of calculation $\begin{aligned} & v=\frac{1.83 \mathrm{~m}}{0.38 \mathrm{~s}} \\ & =2.14 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \end{aligned}$	2
6(a)(ii)	Use of appropriate equation(s) to calculate velocity Velocity $=4.3\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \quad$ (No ue) (if $v=0$ and $g=-9.81$ have not been used only award the first mark) Example of calculation $\begin{aligned} & v=u+a t \\ & 0=u+\left(-9.81 \mathrm{~ms}^{-2}\right) \times 0.44 \mathrm{~s} \\ & u=9.81 \mathrm{~m} \mathrm{~s}^{-2} \times 0.44 \mathrm{~s} \\ & =4.3 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ OR $\begin{aligned} & s=u t+1 / 2 a t^{2} \\ & 0=(u \times 0.88 \mathrm{~s})+\left(1 / 2 \times\left(-9.81 \mathrm{~ms}^{-2}\right) \times(0.88 \mathrm{~s})^{2}\right) \\ & u=4.3 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \hline \text { (1) } \\ & \text { (1) } \end{aligned}$	2
6(a)(iii)	Correct use of Pythagoras/trig function to find the velocity. Magnitude $=4.8 \mathrm{~m} \mathrm{~s}^{-1}$ Correct use of trig function Angle $=64^{\circ} \quad$ (ecf from parts (i) and (ii)) Example of calculation velocity ${ }^{2}=\left(2.1 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}+\left(4.3 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}$ velocity $=4.8 \mathrm{~m} \mathrm{~s}^{-1}$ tan of angle $=\frac{4.3 \mathrm{mg}^{-1}}{21 \mathrm{mg}^{-1}}$ angle $=63.9^{\circ}$	(1) (1) (1) (1)	4
6(b)(i)	Air resistance has not been taken into account OR air resistance acts on the rocket OR friction of the rocket on the stand has not been taken into account OR energy dissipated/transferred due to air resistance (just 'air resistance’ does not gain credit)	(1)	1
6(b)(ii)	Max 2 Can watch again Can slow down/watch frame by frame/stop at maximum height Too fast for humans to see Does not involve reaction time Can zoom in (to see height reached)	(1) (1) (1) (1) (1)	2
	Total for question 16		11

